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On quantisation using periodic classical orbits 
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UK 

Received 18 January 1982 

Abstract. Two approaches to semiclassical quantisation of integrable systems using 
periodic classical orbits are considered. They both lead to approximate formulae for the 
density of states function (a S function at each energy level). The first, due to Gutzwiller, 
involves a sum over isolated stable periodic orbits of the system, and leads to the harmonic 
approximation to the eigenvalues. The second, due to Berry and Tabor, involves a sum 
over families of periodic orbits, and leads to the EBK (‘torus’) approximation to the 
eigenvalues. 

Here, we extract a modified form of the Gutzwiller series from the Berry-Tabor series, 
by using a uniform approximation, and hence show that the complete spectrum involves 
both these series. The analysis demonstrates that genuine semiclassical quantisation rules 
for generic systems, using periodic orbits, will involve uniform approximation, which more 
closely reflects the underlying classical structure than do the existing stationary phase 
approximations. 

1. Introduction 

For a bounded integrable system with N freedoms the classical phase space is filled 
with N-dimensional hypersurfaces with the topology of N-tori (Arnol’d 1974). Any 
given trajectory lies on such a torus in phase space for all time. In the semiclassical 
limit (as h + 0) the quantum eigenvalues may be obtained by quantising these tori, as 
first realised by Einstein (1917). If I = (II, , . . , IN) are the action coordinates of the 
classical system, then the semiclassical eigenvalues are given by 

(1) 

where (Y is the caustic index vector of the torus, and m is a vector of positive integers 
or zeros. (For a general review of torus quantisation see Berry (19821.1 The density 
of states function (a S function at each energy level) is then given by 

I = ( m  + i(u)fi, 

Berry and Tabor (1976) show how to rewrite this as a sum over all periodic orbit 
tori in the classical system (these tori support N-dimensional families of similar periodic 
orbits). Their ‘simple’ semiclassical result is 

where the indices M refer to the topology of the periodic orbit family; that is, the 
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orbit makes Mi windings about the ith irreducible circuit of the torus, for 1 < i < N. 
The prime excludes the M = 0 term, which gives d(E) ,  the smoothly varying average 
density; w ( I M )  is the frequency vector of the torus, K ( I M )  is a scalar curvature of the 
energy surface in action space and p M  is a phase associated with this. For a system 
with two freedoms each term is of order h-3'2, 

Gutzwiller (1971) showed in general, even for non-integrable systems, that it is 
the periodic classical orbits which are important in understanding semiclassical spectra. 
He obtained a formula for d ( E )  involving a sum over all isolated periodic orbits of 
the classical system. Such orbits, unlike periodic tori, occur in all classical systems, 
and they may be stable or unstable. An orbit is stable if neighbouring paths remain 
so as time passes, and unstable if they diverge. Unfortunately, Gutzwillers formula 
in the stable case is frequently divergent and the more sophisticated uniform approxi- 
mation must be obtained. In those integrable systems which possess global action-angle 
variables, there are no unstable isolated orbits with finite period, but there are stable 
ones, which may be thought of as degenerate tori. Consequently, as a first step in 
understanding the uniform approximations we consider integrable systems in this 
paper. 

The contribution to d ( E )  from a stable isolated orbit, for any classical system with 
two freedoms, is given in Gutzwiller's theory by 

where S is the action around the periodic orbit, v is the stability angle, T is the period 
and A is the number of turning points along the orbit. Each term is of order K' ,  
that is of lower order than the torus terms. The sum takes account of all repetitions, 
m, of the basic orbit. It is easy to generalise this result to higher dimensions (Miller 
1975) but we restrict ourselves here to two freedoms. 

Now, terms in this series diverge when $mv(E) is a multiple of v. This is because 
a caustic of the classical propagator occurs along the periodic orbit after an integral 
number of periods. Then the argument leading to (4) breaks down, and the non- 
divergent uniform approximation is required. Gutzwiller appreciated this deficiency, 
and using an intuitive argument suggested that (4), when correctly modified, would 
lead to eigenvalues given by 

S(E) = ( 2 v m  +$v(E)+&rA)h. ( 5 )  

Miller (1975) pointed out that (4) may be rewritten in an exact way, giving an 

S ( E j = [ 2 v m + ( n  + i ) v ( E ) + i v A ] h .  (6) 

Since vh =&'(E), where w is the stability frequency, (6) is interpreted as the 
harmonic approximation to the true semiclassical eigenvalues (see also Voros 1976). 

In figure 1, the action space of an integrable system is shown, with an energy 
contour E = H ( I )  and its harmonic approximation. Eigenvalues of (1) are given by 
a lattice of points in I space, with spacing h. The eigenvalues ( 5 )  are essentially limited 
to the I I  axis. The harmonic eigenvalues (6) occur when the harmonic contour includes 
a lattice point. Clearly, for the integrable case, the eigenvalues (6) are a good 
approximation only where the harmonic contour closely approximates the true contour, 
that is, for low values of n. The reason that all values of n are predicted is that the 

eigenvalue condition 
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Figure 1. Energy contour E = H ( I )  (full curve), and its harmonic approximation (broken 
curve). The integrals in (7) are over the coordinate [, with endpoints {I, &. Real tori 
are represented by points in the positive quadrant, complex tori by points elsewhere. 

divergent terms in (4) have not been treated uniformly. If this is done, then we show 
in 9 2 that the uniformly modified path sum contributes only to those peaks in d ( E )  
which correspond to eigenvalues occurring where the harmonic contours are a good 
approximation to the true contours. 

Now, stable isolated orbits also occur in generic classical systems (Arnol’d 1974) 
where there may be infinitely many. It seems likely that (6) also has limited validity 
in these cases, since it is still not clear how many harmonic eigenvalues to take from 
each orbit. This should become clearer if the divergent terms in (4) are replaced by 
uniform terms which take fuller account of the underlying classical structure near to 
a caustic. The non-divergent terms should still be valid, except perhaps for very long 
paths. 

For integrable systems, our analysis below shows that when uniformly modified, 
Gutzwiller’s path sum (4) extends beyond the harmonic approximation and contributes 
to the peaks in d ( E )  corresponding to eigenvalues of (1) for thin tori. In so doing, 
we find that, for integrable systems, the Gutzwiller terms (4) are small corrections to 
the Berry-Tabor sum (3) which gives the complete semiclassical spectrum. 

2. Isolated orbits in integrable systems with two freedoms 

We use a uniform approximation derived by Berry and Tabor (1976) for the density 
of states in an integrable system, with two freedoms. It starts with a Poisson transforma- 
tion of equation (2) which gives 
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The integrals (hereinafter denoted by dm) are over the energy contour in action 
space (figure l), and U ( [ )  is the frequency vector of the torus represented by the 
point 6. 

This formula may also be obtained using the more general Green function approach 
to the density of states function (Gutzwiller 1970), as we explain in the appendix. 
Equation (7) is interpreted as a sum over closed orbit tori with topology M. The 
simple semiclassical result (3) may be eventually regained if we let z2 + +a and 51 + --Co. 

If a component of a is zero then the energy surface never intersects the correspond- 
ing axis in I space and consequently one of the endpoints moves away to infinity. In 
what follows we assume that this is no? the case. (Otherwise, it is trivial to modify 
the theory.) 

It is assumed that each integral dm has a single stationary point. (If the stationary 
point is outside the range of integration in (7), then the torus of topology M is not 
realised in phase space; it is called a complex torus since, if the motion is a libration, 
the turning points in coordinate space are imaginary.) The integrals may then be 
approximated uniformly in terms of 

where df ld t  is zero at one point only, &. Berry and Tabor obtain the uniform 
approximation 

where the prime indicates differentiation with respect to 6, p is the sign off’(&) and 

.A = * [ (2 / /3 ) ( f (5 )  -f(5c))l’12. 
A is positive if tC is less than f, and is always real. 

It is now important to take this result a stage further using the formula 

which may be easily verified by noticing that the stationary points in the integrand 
are always outside the range of integration, and then using integration by parts. 

We then find the uniform approximation 

which is, of course, equivalent to (9). 
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This is used to write down the uniform approximation to the integrals in (7), 

where 

and 

Now for tC away from the endpoints J-O(h3”) and hence is asymptotically 
negligible with respect to the other terms. We are then left with the first term which 
is the ‘simple’ Berry-Tabor result (3) for a torus of topology M, and the last terms 
which are expressed solely in terms of quantities evaluated on the boundaries, zl and 
f2 .  These are consequently related to the stable isolated orbits of the system (there 
are typically two for an integrable system with two freedoms (which admits global 
action-angle variables), one for I I  = 0 (6 = &) and another for I2 = 0 (5 = &). If a 
component of cy is zero, then there is no corresponding isolated orbit, as previously 
mentioned, and the boundary term vanishes). 

Near to the boundary, J becomes large and it may be shown that it uniformly 
‘sews’ together the solutions for lc S 6. 

To obtain Gutzwiller’s result (4) it is necessary to rewrite the last terms in (12) 
using the periods T ~ ,  72 and the stability angles vl, v2 of the isolated orbit. Call the 
term associated with the boundary at &, dG2, i.e. 

The frequency vector is easily written as 

U(&) = &v2, 27r). 

To find Z’(&) we use the facts that it is a unit tangent vector of the energy contour, 
and w(&)  is perpendicular to the energy contour at &; w * Z‘(t2) = 0 and lZ’(&)l= 1. 

This gives 

Now, the components of cy are always even (for smooth potentials; in fact if any 
are odd then the Gutzwiller formula (4) needs to be modified). The component cy1 

represents the number of directed caustics of neighbouring tori lying alongside the 
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primitive isolated orbit represented by f2 .  We assume that a1 # 0, otherwise the 
isolated orbit is not realised; so we consider only al  = 2, 4, 6, etc. But sufficiently 
near to the isolated orbit the neighbouring tori are always elliptical so that at &, a1 
may be taken as 2. 

The component a2 is the number of caustics of neighbouring tori lying across the 
isolated orbit at &, that is, cyz is the number of turning points, A2,  along the isolated 
orbit. Consequently, 

~T(Y(&) * M = 27~M1 +A27~M2. (15) 

Using (13)-(15), we find 

Now comes a vital point: every periodic torus (real or complex) on the energy 
contour contributes an isolated orbit term like (16). For a particular repetition M2,  
the assumptions of the theory ensure that there is precisely one real or complex torus 
on the energy contour for every integer Ml. Hence, to find the isolated orbit term 
for M2 repetitions, we must sum (16) over all MI to get 

This is valid provided no contributing torus M is 'too close' to the isolated orbit; 
otherwise 27rM1 - v2M2 is near to zero for some M1, and J in (12) becomes large. 

Assuming this does not occur, we do the sum using the standard formula, 

(-l)k 
cosec z = 1 -. 

k = - m Z - T k  

The terms kM2 are summed. (These correspond to traversing the closed orbit forwards 
and backwards.) The result is 

which is precisely a term in Gutzwiller's series (4). 
We have noted that this result is invalid where 27rM1-v2M2 is near to zero. 

However, by referring to the uniform approximation (12) we may quite easily obtain 
the correct form for such terms. 

Integrating J by parts gives 

where 6 = & - tc. 

reduces the torus term by a factor i. 
The first term cancels with the term dg2 on the boundary. The second term 

Consequently for small 257M1 - v2M2, dg2  varies uniformly, giving on the boundary 
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Now since M is perpendicular to the energy contour at &, and 27rM1 = v2M2, 

where A ( & )  is a unit vector perpendicular to the energy contour 5;. 

this form diverges is 
Hence the contribution to d ( E )  for an integrable system which replaces (19) when 

It can be verified that the remaining non-divergent terms in the sum over M I  in 
(1 7) give zero. 

It is important to realise that this expression is no longer associated entirely with 
the isolated orbit. It represents the combined contribution of the isolated orbit and 
the thin torus with topology ( M 1 , M 2 )  which surrounds it. As always with uniform 
approximations the individual contributions are no longer separable. The torus domi- 
nates in (22), since it is a family of orbits; this is the reason it is of order h-3’2, as 
are the simple Berry-Tabor terms (3) (in the case of two freedoms). 

Clearly we must associate the Gutzwiller series (4), in the integrable case, with 
only thin torus eigenvalues of (1). Consequently, we have seen how the harmonic 
approximation ( 6 )  is to be modified in the integrable case, when the Gutzwiller series 
is treated uniformly. 

We should point out that for a different underlying classical structure (for instance, 
in a quasi-integrable system) the uniform approximation might be very different. 

3. Discussion 

We have shown that for integrable systems the Gutzwiller contributions to d ( E )  are 
correction terms to the Berry-Tabor theory. This is achieved in a way that allows us 
to replace the divergent terms in Gutzwiller’s series (where his argument breaks down) 
by uniform terms (22). The corrected series is interpreted as contributing to those 
peaks in the simple Berry-Tabor sum (3), which correspond to thin tori eigenvalues 
in (1); the isolated orbit terms are connected only with this part of the spectrum, and 
the full spectrum is given by the Berry-Tabor theory (which as we have seen includes 
the Gutzwiller terms). This contrasts with the harmonic approximation to d ( E )  (Miller 
1975) which gives a complete set of eigenvalues using only the isolated orbit terms. 

For an integrable system of N (greater than two) freedoms, there will be boundary 
manifolds in phase space of all dimensions less than N, which may be treated in a 
similar uniform manner to the above. The Gutzwiller isolated orbit terms, suitably 
generalised, are then seen to be corrections to the simple Berry-Tabor formula (3) 
for boundary manifolds of dimension one. 

I emphasise that the uniform approximation (22) is valid only for integrable systems. 
For generic systems new uniform approximations must be devised that take account 
of the underlying classical structure. This is the subject of continuing study. 

Finally, a comment about unstable isolated orbits. Gutzwiller (1971) also derived 
a formula for these, analogous to (4), 

Lf cos m(S/fi-i/.rr) 
2 ~ F t  ,,,=I sinh $mv 



2108 P J Richens 

where 1 is the number of caustics along the basic periodic orbit. In generic systems 
this series must also be corrected when periodic orbits of the same action are nearby 
in phase space, and Y is zero. However, in ergodic systems where nearly all periodic 
orbits are isolated and unstable the periodic orbits are all well separated and we would 
expect (23) to be valid for all these paths. In fact, Gutzwiller (1980) and Berry (1981) 
have both recently considered specific ergodic systems in which they demonstrate the 
validity of (23) in the ergodic case. 

In summary, then, it is clear that integrable systems should be semiclassically 
quantised using the Berry-Tabor theory and ergodic systems using the Gutzwiller 
theory for unstable orbits. However, all the systems in between (which includes the 
quasi-integrable case) require that new uniform approximations be devised for the 
periodic orbit expansion of the density of states. 
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Appendix. Green function approach, using action-angle variables 

Here we show how to find the series (7) for the density of states, by using the 
semiclassical Green function. In general, for any bound system with N freedoms, the 
density of states function is given by 

05 

d ( E )  = I dt k ( t )  exp( ;(E + k) t )  
7Th 0 

where k ( t )  is the function Tr exp[- (i/h)fit], and fi is the Hamiltonian operator. 
There are great difficulties in setting up a fully fledged quantum mechanics in 

action-angle variables, but these do not affect the semiclassical formulae. Hence we 
may use these variables to find the approximation of the trace, k ( t ) .  

Firstly, we find the semiclassical propagator in angle coordinates; this is defined by 

Ksc(&,  eA; t )  = (OBI exp[- (i/h)fiflleA>* (A21 

The vectors 10) are, of course, only valid semiclassically. We now use the relation 

where the integral is over all real tori (a complex torus is labelled by real actions I, 
but is not realised in phase space). This gives 

KsC(88, 8 A ;  f ) = j  R dI ' (&  lIf)(If16A) eXp(;H(I')f). ('44) 

The action variables I are given by 

where yi is the ith irreducible circuit of the torus, and Ki is a constant, whose value 
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does not affect the classical mechanics. We will find, however, that for semiclassical 
mechanics there is a convenient choice for Ki which vanishes as h -* 0. 

Now the amplitude of the semiclassical torus states (e I I )  is clearly independent 
of 8 since the density of phase points is constant over the torus. The phase, 4, may 
be found from the general prescription 

(A6) 
l Q  

4(Q)  = A  I P ( Q )  dQ -:(no of directed Q caustics from QO to Q )  
Qo 

where (P, Q )  are canonical coordinates. Since there are no &caustics the phase of 
(e 11') is simply I' (e - eo)/h. 

We will now require that the phase change, Ai4, on going round the ith irreducible 
circuit of the torus is independent of the canonical coordinates used to compute it. 
For any non-singular coordinates the number of Q caustics is ai; hence 

which implies that we choose Ki as -aih/4 for semiclassical approximations. 
Hence, from (A4) we find, after normalising the torus states, 

Upon changing variables to I = I f +  ah/4, we find 

where the integration domain is the positive quadrant of I space. 
The integrand in (A9) has a stationary point at I* given by 

eB-eA=u(r*) f .  
Evaluating the integral by the method of stationary phase then leads to 

Upon placing 88 = + 2 i ~ M  this gives the formula used by Berry and Tabor 
(1977) to evaluate the trace in (Al).  They then use this to regain the simple 
semiclassical result (3). However, it is clear that the stationary phase method misses 
the contributions from the boundaries of the integration domain in (A9), so we will 
proceed by using the integral representation. 

Due to the periodicity of the angle coordinates the trace is 
2lT 

k ( t )  = 1 dB (0 + 2nM/ exp(-ifir/h)/@) 
M 0 

* I -H(I)r)-trcu * 

27r 

2 
1 
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Since the integrands do not involve 8, the &integrals merely introduce a factor 
( 2 7 ~ ) ~ .  Hence, using (Al) and (A12), the density of states function is 

Re  
d ( E )  = &E) + - 

Since the M sum is real and the real part of the t integral is r h S ( E - H ( I ) )  we 
find that 

d ( E ) = d ( E ) + ~ ~ ’ ~ + d I ~ ( E - H ( I ) ) e x p i ( F M . I - - M . n  1 7T 

2 

Following Berry and Tabor (1976), we rewrite the integral in curvilinear co- 
ordinates (to, t) where to is perpendicular to the energy contour E = H ( I )  and 5 = 

(tl, . . . , is parallel to the energy contour. This gives 

where l u ( I ( t ) ) I =  laH/at~.,l and &, & are the boundary values of 5. 
For two freedoms this result easily specialises to (7). The advantage of using the 

integral form (A9) for K,,(BB, eA; t )  over the stationary phase result ( A l l )  is that it 
enables us to find the series of integrals for d ( E ) ,  (A15), which we may evaluate 
uniformly. If we use (A1 l) ,  on the other hand, we may only find the simple semiclassical 
result (3). 
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